PELINDO LIBRARY & KNOWLEDGE CENTER

PT Pendidikan Maritim dan Logistik Indonesia

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Pencarian berdasarkan :

SEMUA Pengarang Subjek ISBN/ISSN Pencarian Spesifik

Pencarian terakhir:

{{tmpObj[k].text}}
Image of a Comparison of traditional and neural networks forecasting techniques for container throughput at Bangkok Port
Penanda Bagikan

a Comparison of traditional and neural networks forecasting techniques for container throughput at Bangkok Port

GOSASANG, Veerachai - Nama Orang; Watcharavee CHANDRAPRAKAIKUL - Nama Orang; Supaporn KIATTISIN - Nama Orang;

Containerization is one of the important factors for Thailand’s economics. However, forecasts of container throughput growth and development of Bangkok Port, the significant port of Thailand, have been scant and the findings are divergence. Moreover, the existing literature emphasizes only two forecasting methods, namely time series and regression analysis. The aim of this paper is to explore Multilayer Perceptron (MLP) and Linear Regression for predicting future container throughput at Bangkok Port. Factors affecting cargo throughput at Bangkok Port were identified and then collected from Bank of Thailand, Office of the National Economic and Social Development Board, World Bank, Ministry of Interior, and Energy Policy and Planning Office. These factors were entered into MLP and Linear Regression forecasting models that generated a projection of cargo throughput. Subsequently, the results were measured by root mean squared error (RMSE) and mean absolute error (MAE). Based on the results, this research provides the best application of forecasting technique which is Neural Network – Multilayer Perceptron technique for predicting container throughput at Bangkok Port.


Ketersediaan
#
IPC Corporate University Library ATC PO GOS c
ATC1600008
Tersedia
Informasi Detail
Judul Seri
-
No. Panggil
ATC PO GOS c
Penerbit
Thailand : The Asian Journal of Shipping and Logistics., 2011
Deskripsi Fisik
20 pages
Bahasa
Indonesia
ISBN/ISSN
-
Klasifikasi
PO
Tipe Isi
-
Tipe Media
-
Tipe Pembawa
online resource
Edisi
Volume 27 Number 3 December 2011 pp. 463-482
Subjek
Forecasting
Neural Networks
Multilayer Perceptron (MLP)
Linear Regression
Container throughput
Info Detail Spesifik
-
Pernyataan Tanggungjawab
Veerachai GOSASANG
Versi lain/terkait
JudulEdisiBahasa
Ship-to-ship radiocommunication trial by using wireless LANen
Empirical analysis of influence factors to container throughput in korea and china portsVolume 27en
The MED rule: the interdependence of container throughput and transhipment volumes in the Mediterranean portsVOL. 26, NO. 2, 175 ± 193, 1999en
Hybrid approaches based on SARIMA and artificial neural networks for inspection time series forecastingen
Impact of port Investment on efficiency and capacity to attract traffic in Spain : Bilbao versus Valenciaen
Transportation, facility location and inventory issues in distribution network design: An investigationVol. 18 Issue: 5, pp.471-494en
Lampiran Berkas
  • Harap masuk untuk melihat lampiran
Komentar

Anda harus masuk sebelum memberikan komentar

PELINDO LIBRARY & KNOWLEDGE CENTER
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

PT Pendidikan Maritim dan Logistik Indonesia (PMLI) berdiri pada 10 Juli 2013, berdasarkan Akta Pendirian No. 26 Tanggal 10 Juli 2013 dan Akta Kementerian Hukum dan Hak Asasi Manusia No. AHU-45955.AH.01.01 tahun 2013.

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

© 2025 PT Pendidikan Maritim dan Logistik Indonesia

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Karya Umum
  • Filsafat
  • Agama
  • Ilmu-ilmu Sosial
  • Bahasa
  • Ilmu-ilmu Murni
  • Ilmu-ilmu Terapan
  • Kesenian, Hiburan, dan Olahraga
  • Kesusastraan
  • Geografi dan Sejarah
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik
Kemana ingin Anda bagikan?